Taxonomically-linked growth phenotypes during arsenic stress among arsenic resistant bacteria isolated from soils overlying the Centralia coal seam fire
نویسندگان
چکیده
Arsenic (As), a toxic element, has impacted life since early Earth. Thus, microorganisms have evolved many As resistance and tolerance mechanisms to improve their survival outcomes given As exposure. We isolated As resistant bacteria from Centralia, PA, the site of an underground coal seam fire that has been burning since 1962. From a 57.4°C soil collected from a vent above the fire, we isolated 25 unique aerobic As resistant bacterial strains spanning seven genera. We examined their diversity, resistance gene content, transformation abilities, inhibitory concentrations, and growth phenotypes. Although As concentrations were low at the time of soil collection (2.58 ppm), isolates had high minimum inhibitory concentrations (MICs) of arsenate and arsenite (>300 mM and 20 mM respectively), and most isolates were capable of arsenate reduction. We screened isolates (PCR and sequencing) using 12 published primer sets for six As resistance genes (AsRGs). Genes encoding arsenate reductase (arsC) and arsenite efflux pumps (arsB, ACR3(2)) were present, and phylogenetic incongruence between 16S rRNA genes and AsRGs provided evidence for horizontal gene transfer. A detailed investigation of differences in isolate growth phenotypes across As concentrations (lag time to exponential growth, maximum growth rate, and maximum OD590) showed a relationship with taxonomy, providing information that could help to predict an isolate's performance given As exposure in situ. Our results suggest that microbiological management and remediation of environmental As could be informed by taxonomically-linked As tolerance, potential for resistance gene transferability, and the rare biosphere.
منابع مشابه
Arsenic-resistant bacteria isolated from agricultural soils of Bangladesh and characterization of arsenate-reducing strains.
AIMS To analyse the arsenic-resistant bacterial communities of two agricultural soils of Bangladesh, to isolate arsenic-resistant bacteria, to study their potential role in arsenic transformation and to investigate the genetic determinants for arsenic resistance among the isolates. METHODS AND RESULTS Enrichment cultures were performed in a minimal medium in the presence of As(III) and As(V) ...
متن کاملArsenic-resistant bacteria solubilized arsenic in the growth media and increased growth of arsenic hyperaccumulator Pteris vittata L.
The role of arsenic-resistant bacteria (ARB) in arsenic solubilization from growth media and growth enhancement of arsenic-hyperaccumulator Pteris vittata L. was examined. Seven ARB (tolerant to 10 mM arsenate) were isolated from the P. vittata rhizosphere and identified by 16S rRNA sequencing as Pseudomonas sp., Comamonas sp. and Stenotrophomonas sp. During 7-d hydroponic experiments, these ba...
متن کاملPhosphorus solubilization and plant growth enhancement by arsenic-resistant bacteria.
Phosphorus is an essential nutrient, which is limited in most soils. The P solubilization and growth enhancement ability of seven arsenic-resistant bacteria (ARB), which were isolated from arsenic hyperaccumulator Pteris vittata, was investigated. Siderophore-producing ARB (PG4, 5, 6, 9, 10, 12 and 16) were effective in solubilizing P from inorganic minerals FePO4 and phosphate rock, and organi...
متن کاملIsolation and characterization of arsenic resistant bacteria from wastewater
The present study proposed the isolation of arsenic resistant bacteria from wastewater. Only three bacterial isolates (MNZ1, MNZ4 and MNZ6) were able to grow in high concentrations of arsenic. The minimum inhibitory concentrations of arsenic against MNZ1, MNZ4 and MNZ6 were 300 mg/L, 300 mg/L and 370 mg/L respectively. The isolated strains showed maximum growth at 37 °C and at 7.0 pH in control...
متن کاملCharacterization of arsenic-resistant bacteria from the rhizosphere of arsenic hyperaccumulator Pteris vittata.
Arsenic hyperaccumulator fern Pteris vittata L. produces large amounts of root exudates that are hypothesized to solubilize arsenic and maintain a unique rhizosphere microbial community. Total heterotrophic counts on rich or defined media supplemented with up to 400 mmol/L of arsenate showed a diverse arsenate-resistant microbial community from the rhizosphere of P. vittata growing in arsenic-c...
متن کامل